Bispectral Jacobi type polynomials
نویسندگان
چکیده
We study the bispectrality of Jacobi type polynomials, which are eigenfunctions higher-order differential operators and can be defined by taking suitable linear combinations a fixed number consecutive polynomials. polynomials include, as particular cases, Krall-Jacobi As main results we prove that always satisfy recurrence relations (i.e., they bispectral). also families only orthogonal with respect to measure on real line.
منابع مشابه
Jacobi Polynomials, Type II Codes, and Designs
Jacobi polynomials were introduced by Ozeki in analogy with Jacobi forms of lattices They are useful for coset weight enumeration and weight enumeration of children We determine them in most interesting cases in length at most and in some cases in length We use them to construct group divisible designs packing designs covering designs and t r designs in the sense of Calderbank Delsarte A major ...
متن کاملEstimates for Jacobi-sobolev Type Orthogonal Polynomials
Let the Sobolev-type inner product 〈f, g〉 = ∫
متن کاملOn a Pollaczek-Jacobi type orthogonal polynomials
We study a sequence of polynomials orthogonal with respect to a family weights w(x) := w(x, t) = e x(1− x) , t ≥ 0, over [−1, 1]. If t = 0, this reduces to a shifted Jacobi weight. Our ladder operator formalism and the associated compatibility conditions give an easy determination of the recurrence coefficients. For t > 0, the deformation term e−t/x induces an infinitely strong zero at x = 0. T...
متن کاملNon-symmetric Jacobi and Wilson Type Polynomials
Consider a root system of type BC1 on the real line R with general positive multiplicities. The Cherednik-Opdam transform defines a unitary operator from an L-space on R to a L-space of C-valued functions on R with the Harish-Chandra measure |c(λ)|dλ. By introducing a weight function of the form cosh(t) tanh t on R we find an orthogonal basis for the L-space on R consisting of even and odd func...
متن کاملThe Rahman Polynomials Are Bispectral
In a very recent paper, M. Rahman introduced a remarkable family of polynomials in two variables as the eigenfunctions of the transition matrix for a nontrivial Markov chain due to M. Hoare and M. Rahman. I indicate here that these polynomials are bispectral. This should be just one of the many remarkable properties enjoyed by these polynomials. For several challenges, including finding a gener...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Applied Mathematics
سال: 2022
ISSN: ['1090-2074', '0196-8858']
DOI: https://doi.org/10.1016/j.aam.2022.102322